成都监控安装网欢迎你:监控安装、监控摄像头安装、监控器安装、网络监控安装、监控工程;专业承接各种监控安装等弱电工程

诚信 · 专业 · 高效

当前位置:

大数据推动汽车融合发展催生技能变革

更新时间:2018-10-10  阅览次数: 997 次

近年来,电子信息领域新技能发展迅速,物联网、云计算、大数据、移动互联等新技能正在向传统行业渗透,在汽车和交通等行业,与此相关的车路协同系统、出行智能化便捷服务、车联网等成为目前发展的热点技能,并正在引起行业巨大的变革。

4月9至10日,“2018汽车产业数据研究峰会”在成都举办。峰会以“大数据推动汽车产业发展”为主题,围绕大数据时代下的汽车产业发展、跨行业多角度数据交流、汽车产业可持续发展等议题展开讨论。

传统的汽车行业数据来源不畅、结构单一、运用较浅,无法满足企业的数据需求。而互联网、移动互联技能的快速普及,正在诸多方面改变着人们的车辆购置和使用习惯,使传统的汽车数据收集、分析和利用方式发生重大转变。

“大数据时代的来临给汽车产业带来的是电动化、轻量化、智能化、互联网化的相互融合。”协会会长吴忠泽认为,“大数据产业在经历了数据爆发式增长的大数据1.0时代后,初步进入了以大数据中创造实际价值为标志的2.0时代,技能日趋精细,专业服务日益多样。”

数据收集

车企、经销商、互联网及消费者等多渠道的数据收集方式日趋完善。车企大数据包括客户信息、交易信息、车辆信息、生产信息、采购信息、维修信息、投诉信息等。经销商通过移动互联、后台音频整理、证照识别录入等新技能的使用,实现从消费者“关注”到“消费”整个过程核心行为要素的实时监测,确保消费者入店行为数据的全录入,同时监测车辆4s店维修保养信息。

通过统计微博、峰会、网页等互联网大数据,企业允许监控客户进入首页,查看车辆详情及停留时间,洞察客户对车辆的关注点和走势,掌握不同客户的潜在需求及预期,监控产品舆情反馈等等。

在消费者方面,车联网将对客户使用车辆的信息进行监测,包括车主行为数据,车况数据,位置数据,驾驶数据等。

数据分析

数据分析需要将多渠道、标准不一的客户数据进行整合,建立汽车大数据库,主要分六步:数据融合、用户识别、全网用户识别、用户标签、用户聚类、用户细分。

数据融合是把分散在不同系统之间的数据整合在一起,包括生产数据、销售数据、售后数据、互联网数据等;用户识别是通过数据清洗,识别出每个客户的详细信息。全网用户识别是采集客户的网上行为数据,进行全网客户识别,产生360度全方位客户视图;用户标签是将每个客户的特点、爱好、生活习惯,进行细致区分,并以标签化进行用户定义;用户聚类是指根据客户的标签进行分组;用户细分是对客户完成精准细分,针对目标客户开展一对一精准营销。通过这六步即建成统一、整合、可直接使用的数据库。

数据利用

汽车行业对互联网、大数据等新兴科技的利用涉及到产业链的各个环节,包括:用户洞察、开展精准营销、改善客户管理及服务、改善产品研发和提升产品质量、业务运营监控、汽车后市场、交通领域、汽车流通等方面。通过对多渠道的汽车大数据进行融合及挖掘,能够深刻地明白客户需求及动向、掌握客户信息、进行市场细分、竞争分析、掌握客户满意度等。大数据还可用于开展精准营销,通过整合汽车媒体、微信、等互联网渠道潜客数据,扩大线索入口,提高非店面的新增潜客线索量,并挖掘保有客户的增购、换购、荐购线索,从新客户和保有客户两个维度扩大线索池;运用大数据道理,定义线索级别并进行购车意向分析,优化潜客培育,提高销售线索的转化率,提升销量。

机遇与挑战

目前,汽车行业对大数据的收集、分析和利用仍处于探索阶段,在这个进程中面临着诸多挑战。

吴忠泽概括总结了四个方面:一是汽车厂商众多,相关数据检测方式多样,信息模式复杂,造成数据种类繁多,且缺乏统一的标准,各厂商的数据资源缺乏互通共享;二是在数据开放的同时,如何从法律和行政法规上确保和加强数据的安全监管,提高数据资源的安全性,尊重和保护相关政府部门、汽车制造商以及个人的机密和隐私不收侵犯;三是如何提升汽车数据资源的综合利用效率,将汽车相关数据信息进行有效地联系、汇聚和发展,改善汽车使用者的服务水平;四是,目前我们尚缺乏有效的市场化推进机制,基于汽车大数据的信息服务产业链、价值链尚未真正形成;五是前次和大数据缺乏顶层设计,汽车及相关产业的数据壁垒没有打通,丰富且分散的数据资源不能有效协调利用。

今后一段时间,汽车产业的一个重要发展方向便是迎接大数据时代的机遇与挑战,立足国情、运用新技能手段,结合智能交通系统建设发展,加快汽车大数据分析技能研发,促进汽车制造商的服务转型。